Objectives:

- State the Fundamental Theorem of Calculus.
- Apply the Fundamental Theorem of Calculus to work with functions defined as integrals.

Example 1 If $g(x) = \int_1^x t^3 dt$, find a formula for g(x) that doesn't involve an integral and calculate g'(x).

We can compute g(x) with the Evaluation Theorem:

$$g(x) = \int_1^x t^3 dt = \frac{t^4}{4} \bigg|_1^x = \frac{x^4 - 1}{4}.$$

Now, we can take the derivative directly:

$$g'(x) = \frac{d}{dx} \left(\frac{1}{4}x^4 - \frac{1}{4} \right) = x^3$$

Weird! The derivative of $g(x) = \int_1^x t^3 dt$ is early similar to the integrand, t^3 .

The Fundamental Theorem of Calculus (Part I)

If f is _____ on the continuous on [a, b] _____, then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt$$
 $a \le x \le b$

is an antiderivative of f, that is, g'(x) = f(x) for a < x < b.

Example 2 Find the derivative of the function $g(x) = \int_0^x \sqrt{1+t^2} \ dt$.

Since $f(t) = \sqrt{1+t^2}$ is continuous for $x \ge 0$, we can use Part I of the Fundamental Theorem of Calculus:

$$g'(x) = \sqrt{1 + x^2}.$$

The Fundamental Theorem of Calculus

Suppose f is continuous on [a, b].

1. If
$$g(x) = \int_{a}^{x} f(t) dt$$
, then $g'(x) = f(x)$.

2.
$$\int_a^b f(x) dx = F(b) - F(a)$$
, where F is any antiderivative of f, that is $F' = f$.

For each of the following functions, find the derivative.

1.
$$g(x) = \int_{1}^{x} \frac{1}{t^{3} + 1} dt$$

 $g'(x) = \frac{1}{x^{3} + 1}$

4.
$$f(x) = \int_{1}^{x^4} \sec(t) dt$$

 $f'(x) = \sec(x)(4x^3)$

2.
$$r(y) = \int_{2}^{y} t^{2} \sin(t) dt$$

 $r'(y) = y^{2} \sin(y)$

3.
$$F(x) = \int_{x}^{\pi} \sqrt{1 + \sec(t)} dt$$
$$F'(x) = -\sqrt{1 + \sec x}$$

5.
$$h(x) = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$
$$h(x) = \int_{2x}^{c} \frac{u^2 - 1}{u^2 + 1} du + \int_{c}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$
$$= -\int_{c}^{2x} \frac{u^2 - 1}{u^2 + 1} du + \int_{c}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$
$$h'(x) = -\frac{(2x)^2 - 1}{(2x)^2} (2) + \frac{(3x)^2 - 1}{(3x)^2} (3)$$